Semidefinite programming for model-based sensorless adaptive optics

Jacopo Antonello, Michel H.G. Verhaegen, Rufus Fraanje, Tim van Werkhoven, Hans C. Gerritsen, Christoph U. Keller: Semidefinite programming for model-based sensorless adaptive optics. In: Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 29, no. 11, pp. 2428-2438, 2012, (cited By (since 1996) 0).

Abstract

Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic polynomial. We propose a new method to compute the parameters of the polynomial from experimental data. This method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computation of the parameters with respect to existing methods. In addition, we propose an algorithm to perform aberration correction requiring a minimum of N + 1 measurements, where N is the number of considered aberration modes. This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our arguments are corroborated by experimental validation in a laboratory environment. © 2012 Optical Society of America.

BibTeX (Download)

@article{Antonello20122428,
title = {Semidefinite programming for model-based sensorless adaptive optics},
author = {Jacopo Antonello and Michel H.G. Verhaegen and Rufus Fraanje and Tim van Werkhoven and Hans C. Gerritsen and Christoph U. Keller},
url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84869786716&partnerID=40&md5=202137cf58ed5b14c167285f48295edc},
year  = {2012},
date = {2012-01-01},
journal = {Journal of the Optical Society of America A: Optics and Image Science, and Vision},
volume = {29},
number = {11},
pages = {2428-2438},
abstract = {Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic polynomial. We propose a new method to compute the parameters of the polynomial from experimental data. This method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computation of the parameters with respect to existing methods. In addition, we propose an algorithm to perform aberration correction requiring a minimum of N + 1 measurements, where N is the number of considered aberration modes. This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our arguments are corroborated by experimental validation in a laboratory environment. © 2012 Optical Society of America.},
note = {cited By (since 1996) 0},
keywords = {},
pubstate = {published},
tppubtype = {article}
}